
Serverless Performance Simulator
Release 0.2.2

Nima Mahmoudi

Feb 18, 2021

CONTENTS:

1 Installation 3

2 Serverless Simulator 5

3 Temporal Simulator 11
3.1 Serverless Temporal Simulator . 11
3.2 Exponential Temporal Simulator . 11

4 Multi-Request Serverless Simulator 13

5 Simulated Process 15

6 API Reference 19
6.1 ServerlessSimulator . 19
6.2 ServerlessTemporalSimulator . 24
6.3 ParServerlessSimulator . 24
6.4 FunctionInstance . 25
6.5 ParFunctionInstance . 27
6.6 SimProcess . 28
6.7 Utility . 30

7 Jupyter Docker Image 31
7.1 Installation . 31
7.2 Running . 31
7.3 Building the Docker Image . 32

8 Indices and tables 33

Python Module Index 35

Index 37

i

ii

Serverless Performance Simulator, Release 0.2.2

This is a project done in PACS Lab aiming to develop a performance simulator for serverless computing platforms.
Using this simulator, we can calculate Quality of Service (QoS) metrics like average response time, the average
probability of cold start, average running servers (directly reflecting average cost), a histogram of different events,
distribution of the number of servers throughout time, and many other characteristics.

The developed performance model can be used to debug/improve analytical performance models, try new and im-
proved management schema, or dig up a whole lot of properties of a common modern scale-per-request serverless
platform.

You can check out the source code in our Github Repository. You can find the paper with details of the simultor in
PACS lab website. You can use the following bibtex entry for citing our work:

@inproceedings{mahmoudi2021simfaas,
author={Mahmoudi, Nima and Khazaei, Hamzeh},
title={{SimFaaS: A Performance Simulator for Serverless Computing Platforms}},
year={2021},
publisher = {Springer},
booktitle={{International Conference on Cloud Computing and Services Science}},
pages={1--11},
numpages = {11},
keywords = {performance modelling, serverless computing, serverless, simulator,

→˓performance},
series = {CLOSER '21},
url_paper={},
url_pdf={https://pacs.eecs.yorku.ca/pubs/pdf/SimFaaS_CLOSER2021_Website_Preprint.

→˓pdf}
}

@misc{mahmoudi2021simfaaspre,
title={{SimFaaS: A Performance Simulator for Serverless Computing Platforms}},
author={Nima Mahmoudi and Hamzeh Khazaei},
year={2021},
eprint={2102.08904},
archivePrefix={arXiv},
primaryClass={cs.DC},
url_paper={https://arxiv.org/abs/2102.08904}

}

CONTENTS: 1

https://hub.docker.com/r/nimamahmoudi/jupyter-simfaas
https://pacs.eecs.yorku.ca/
https://github.com/pacslab/simfaas
https://pacs.eecs.yorku.ca/publications/

Serverless Performance Simulator, Release 0.2.2

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

Install using pip:

pip install simfaas

Upgrading using pip:

pip install simfaas --upgrade

For installation in development mode:

git clone https://github.com/pacslab/simfaas
cd simfaas
pip install -e .

And in case you want to be able to execute the examples:

pip install -r examples/requirements.txt

3

Serverless Performance Simulator, Release 0.2.2

4 Chapter 1. Installation

CHAPTER

TWO

SERVERLESS SIMULATOR

class simfaas.ServerlessSimulator.ServerlessSimulator(arrival_process=None,
warm_service_process=None,
cold_service_process=None,
expiration_threshold=600,
max_time=86400, maxi-
mum_concurrency=1000,
**kwargs)

Bases: object

ServerlessSimulator is responsible for executing simulations of a sample serverless computing platform, mainly
for the performance analysis and performance model evaluation purposes.

Parameters

• arrival_process (simfaas.SimProcess.SimProcess, optional) – The
process used for generating inter-arrival samples, if absent, arrival_rate should be passed to
signal exponential distribution, by default None

• warm_service_process (simfaas.SimProcess.SimProcess, optional)
– The process which will be used to calculate service times, if absent, warm_service_rate
should be passed to signal exponential distribution, by default None

• cold_service_process (simfaas.SimProcess.SimProcess, optional)
– The process which will be used to calculate service times, if absent, cold_service_rate
should be passed to signal exponential distribution, by default None

• expiration_threshold (float, optional) – The period of time after which the
instance will be expired and the capacity release for use by others, by default 600

• max_time (float, optional) – The maximum amount of time for which the simu-
lation should continue, by default 24*60*60 (24 hours)

• maximum_concurrency (int, optional) – The maximum number of concurrently
executing function instances allowed on the system This will be used to determine when a
rejection of request should happen due to lack of capacity, by default 1000

Raises

• Exception – Raises if neither arrival_process nor arrival_rate are present

• Exception – Raises if neither warm_service_process nor warm_service_rate are present

• Exception – Raises if neither cold_service_process nor cold_service_rate are present

• ValueError – Raises if warm_service_rate is smaller than cold_service_rate

5

Serverless Performance Simulator, Release 0.2.2

analyze_custom_states(hist_states, skip_init_time=None, skip_init_index=None)
Analyses a custom states list and calculates the amount of time spent in each state each time we enterred
that state, and the times at which transitions have happened.

Parameters

• hist_states (list[object]) – The states calculated, should have the same dimen-
sions as the hist_* arrays.

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index (int, optional) – The number of indices skipped in the be-
ginning, by default None

Returns (residence_times, transition_times) where residence_times is an array of the amount of
times we spent in each state, and transition_times are the moments of time at which each
transition has occured

Return type list[float], list[float]

calculate_time_average(values, skip_init_time=None, skip_init_index=None)
calculate_time_average calculates the time-averaged of the values passed in with optional skipping a spe-
cific number of time steps (skip_init_index) and a specific amount of time (skip_init_time).

Parameters

• values (list) – A list of values with the same dimensions as history array (number of
transitions)

• skip_init_time (Float, optional) – Amount of time skipped in the beginning
to let the transient part of the solution pass, by default None

• skip_init_index ([type], optional) – Number of steps skipped in the begin-
ning to let the transient behaviour of system pass, by default None

Returns returns (unq_vals, val_times) where unq_vals is the unique values inside the values list
and val_times is the portion of the time that is spent in that value.

Return type (list, list)

calculate_time_lengths()
Calculate the time length for each step between two event transitions. Records the values in
self.time_lengths.

cold_start_arrival(t)
Goes through the process necessary for a cold start arrival which includes generation of a new function
instance in the COLD state and adding it to the cluster.

Parameters t (float) – The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

generate_trace(debug_print=False, progress=False)
Generate a sample trace.

Parameters

• debug_print (bool, optional) – If True, will print each transition occuring dur-
ing the simulation, by default False

• progress (bool, optional) – Whether or not the progress should be outputted
using the tqdm library, by default False

6 Chapter 2. Serverless Simulator

Serverless Performance Simulator, Release 0.2.2

Raises Exception – Raises if FunctionInstance enters an unknown state (other than IDLE for
idle or TERM for terminated) after making an internal transition

get_average_lifespan()
Get the average lifespan of each instance, calculated by the amount of time from creation of instance, until
its expiration.

Returns The average lifespan

Return type float

get_average_residence_times(hist_states, skip_init_time=None, skip_init_index=None)
Get the average residence time for each state in custom state encoding.

Parameters

• hist_states (list[object]) – The states calculated, should have the same dimen-
sions as the hist_* arrays.

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index (int, optional) – The number of indices skipped in the be-
ginning, by default None

Returns The average residence time for each state, averaged over the times we transitioned into
that state

Return type float

get_average_server_count()
Get the time-average server count.

Returns Average server count

Return type float

get_average_server_idle_count()
Get the time-averaged idle server count.

Returns Average idle server count

Return type float

get_average_server_running_count()
Get the time-averaged running server count.

Returns Average running server coutn

Return type float

get_cold_start_prob()
Get the probability of cold start for the simulated trace.

Returns The probability of cold start calculated by dividing the number of cold start requests,
over all requests

Return type float

get_index_after_time(t)
Get the first historical array index (for all arrays storing hisotrical events) that is after the time t.

Parameters t (float) – The time in the beginning we want to skip

Returns The calculated index in self.hist_times

Return type int

7

Serverless Performance Simulator, Release 0.2.2

get_request_custom_states(hist_states, skip_init_time=None, skip_init_index=None)
Get request statistics for an array of custom states.

Parameters

• hist_states (list[object]) – An array of custom states calculated by the user for
which the statistics should be calculated, should be the same size as hist_* objects, these
values will be used as the keys for the returned dataframe.

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index (int, optional) – The number of indices that should be
skipped in the beginning to calculate steady-state results, by default None

Returns A pandas dataframe including different statistics like p_cold (probability of cold start)

Return type pandas.DataFrame

get_result_dict()
Get the results of the simulation as a dict, which can easily be integrated into web services.

Returns A dictionary of different characteristics.

Return type dict

get_skip_init(skip_init_time=None, skip_init_index=None)
Get the minimum index which satisfies both the time and index count we want to skip in the beginning of
the simulation, which is used to reduce the transient effect for calculating the steady-state values.

Parameters

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index ([type], optional) – The number of indices we want to skip
in the historical events, by default None

Returns The number of indices after which both index and time requirements are satisfied

Return type int

get_trace_end()
Get the time at which the trace (one iteration of the simulation) has ended. This mainly due to the fact that
we keep on simulating until the trace time goes beyond max_time, but the time is incremented until the
next event.

Returns The time at which the trace has ended

Return type float

has_server()
Returns True if there are still instances (servers) in the simulated platform, False otherwise.

Returns Whether or not the platform has instances (servers)

Return type bool

is_warm_available(t)
Whether we have at least one available instance in the warm pool that can process requests

Parameters t (float) – Current time

Returns True if at least one server is able to accept a request

Return type bool

8 Chapter 2. Serverless Simulator

Serverless Performance Simulator, Release 0.2.2

static print_time_average(vals, probs, column_width=15)
Print the time average of states.

Parameters

• vals (list[object]) – The values for which the time average is to be printed

• probs (list[float]) – The probability of each of the members of the values array

• column_width (int, optional) – The width of the printed result for vals, by de-
fault 15

print_trace_results()
Print a brief summary of the results of the trace.

req()
Generate a request inter-arrival from self.arrival_process

Returns The generated inter-arrival sample

Return type float

reset_trace()
resets all the historical data to prepare the class for a new simulation

schedule_warm_instance(t)
Goes through a process to determine which warm instance should process the incoming request.

Parameters t (float) – The time at which the scheduling is happening

Returns The function instances that the scheduler has selected for the incoming request.

Return type simfaas.FunctionInstance.FunctionInstance

trace_condition(t)
The condition for resulting the trace, we continue the simulation until this function returns false.

Parameters t (float) – current time in the simulation since the start of simulation

Returns True if we should continue the simulation, false otherwise

Return type bool

update_hist_arrays(t)
Update history arrays

Parameters t (float) – Current time

warm_start_arrival(t)
Goes through the process necessary for a warm start arrival which includes selecting a warm instance for
processing and recording the request information.

Parameters t (float) – The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

9

Serverless Performance Simulator, Release 0.2.2

10 Chapter 2. Serverless Simulator

CHAPTER

THREE

TEMPORAL SIMULATOR

In this family of classes, we want to extract temporal characteristics using execution of simulations. We can extract
average estimates by average over several executions of the simulation (sample average). All of these classes extend
the functionality provided by ServerlessSimulator, you can use the same arguments and call the same methods,
with some exteded functionality provided below.

3.1 Serverless Temporal Simulator

class simfaas.ServerlessTemporalSimulator.ServerlessTemporalSimulator(running_function_instances,
idle_function_instances,
*args,
**kwargs)

Bases: simfaas.ServerlessSimulator.ServerlessSimulator

ServerlessTemporalSimulator extends ServerlessSimulator to enable extraction of temporal characteristics. Also
gets all of the arguments accepted by ServerlessSimulator

Parameters

• running_function_instances (list[FunctionInstance]) – A list contain-
ing the running function instances

• idle_function_instances (list[FunctionInstance]) – A list containing
the idle function instances

3.2 Exponential Temporal Simulator

The exponential temporal simulator assume exponential inter-event distribution for both arrival and departure from
each function instance.

class simfaas.ServerlessTemporalSimulator.ExponentialServerlessTemporalSimulator(running_function_instance_count,
idle_function_instance_next_terminations,
*args,
**kwargs)

Bases: simfaas.ServerlessTemporalSimulator.ServerlessTemporalSimulator

ExponentialServerlessTemporalSimulator is a simulator assuming exponential distribution for proceesing times
which means each process is state-less and we can generate a service time and use that from now on. This class
extends ServerlessTemporalSimulator which has functionality for other processes as well.

Parameters

11

Serverless Performance Simulator, Release 0.2.2

• running_function_instance_count (integer) – run-
ning_function_instance_count is the number of instances currently processing a request

• idle_function_instance_next_terminations (list[float]) –
idle_function_instance_next_terminations is an array of next termination scheduled
for idle functions if they receive no new requests.

12 Chapter 3. Temporal Simulator

CHAPTER

FOUR

MULTI-REQUEST SERVERLESS SIMULATOR

This class represents simulators for serverless computing platforms like Google Cloud Run that allow multiple requests
to enter an instance concurrenctly, and scale the instances based on a preset maximum concurrency value set by the
user.

class simfaas.ParServerlessSimulator.ParServerlessSimulator(concurrency_value:
int, *args,
**kwargs)

Bases: simfaas.ServerlessSimulator.ServerlessSimulator

ParServerlessSimulator is responsible for executing simulations of a sample serverless computing platform with
the ability to handle concurrent request in each instance, mainly for the performance analysis and performance
model evaluation purposes. For parameters, refer to ServerlessSimulator.

Parameters concurrency_value (int) – The number of concurrent requests allowed for each
function instance.

cold_start_arrival(t)
Goes through the process necessary for a cold start arrival which includes generation of a new function
instance in the COLD state and adding it to the cluster.

Parameters t (float) – The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

get_average_conc_avgs()
Get the time-averaged average concurrency levels among all instances.

Returns Average concurrency levels of instances

Return type float

get_result_dict()
Get the results of the simulation as a dict, which can easily be integrated into web services.

Returns A dictionary of different characteristics.

Return type dict

is_warm_available(t)
Whether we have at least one available instance in the warm pool that can process requests

Parameters t (float) – Current time

Returns True if at least one server is able to accept a request

Return type bool

print_trace_results()
Print a brief summary of the results of the trace.

13

https://cloud.google.com/run

Serverless Performance Simulator, Release 0.2.2

reset_trace()
resets all the historical data to prepare the class for a new simulation with additional functionality added
to base class.

update_hist_arrays(t)
Update history arrays

Parameters t (float) – Current time

14 Chapter 4. Multi-Request Serverless Simulator

CHAPTER

FIVE

SIMULATED PROCESS

class simfaas.SimProcess.ConstSimProcess(rate)
Bases: simfaas.SimProcess.SimProcess

ConstSimProcess extends the functionality of SimProcess for constant processes, meaning this is a determin-
istic process and fires exactly every 1/rate seconds. This class does not implement the pdf and cdf functions.

rate [float] The rate at which the process should fire off

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

class simfaas.SimProcess.ExpSimProcess(rate)
Bases: simfaas.SimProcess.SimProcess

ExpSimProcess extends the functionality of SimProcess for exponentially distributed processes. This class
also implements the pdf and cdf functions which can be used for visualization purposes.

rate [float] The rate at which the process should fire off

cdf(x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (float) – The time for which the cdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf(x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (float) – The time for which the pdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

class simfaas.SimProcess.GaussianSimProcess(rate, std)
Bases: simfaas.SimProcess.SimProcess

GaussianSimProcess extends the functionality of SimProcess for gaussian processes. This class also imple-
ments the pdf and cdf functions which can be used for visualization purposes.

15

Serverless Performance Simulator, Release 0.2.2

rate [float] The rate at which the process should fire off

std [float] The standard deviation of the simulated process

cdf(x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (float) – The time for which the cdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf(x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (float) – The time for which the pdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

class simfaas.SimProcess.SimProcess
Bases: object

SimProcess gives us a single interface to simulate different processes. This will later on be used to simulated
different processes and compare them agaist a custom analytical model. In the child class, after performing
super().__init__(), properties self.has_pdf and self.has_cdf by default value of False will be created. In case
your class has the proposed PDF and CDF functions available, you need to override these values in order for
your model PDF to show up in the output plot.

cdf(x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (float) – The time for which the cdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf(x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (float) – The time for which the pdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

visualize(num_traces=10000, num_bins=100)
visualize function visualizes the PDF and CDF of the simulated process by generating traces from your
function using generate_trace() and converting the resulting histogram values (event counts) to
densities to be comparable with PDF and CDF functions calculated analytically.

num_traces [int, optional] Number of traces we want to generate for calculating the histogram,
by default 10000

16 Chapter 5. Simulated Process

Serverless Performance Simulator, Release 0.2.2

num_bins [int, optional] Number of bins for the histogram which created the density probabili-
ties, by default 100

17

Serverless Performance Simulator, Release 0.2.2

18 Chapter 5. Simulated Process

CHAPTER

SIX

API REFERENCE

You can also checkout Module Index for a list of all modules implemented in this package.

6.1 ServerlessSimulator

class simfaas.ServerlessSimulator.ServerlessSimulator(arrival_process=None,
warm_service_process=None,
cold_service_process=None,
expiration_threshold=600,
max_time=86400, maxi-
mum_concurrency=1000,
**kwargs)

Bases: object

ServerlessSimulator is responsible for executing simulations of a sample serverless computing platform, mainly
for the performance analysis and performance model evaluation purposes.

Parameters

• arrival_process (simfaas.SimProcess.SimProcess, optional) – The
process used for generating inter-arrival samples, if absent, arrival_rate should be passed to
signal exponential distribution, by default None

• warm_service_process (simfaas.SimProcess.SimProcess, optional)
– The process which will be used to calculate service times, if absent, warm_service_rate
should be passed to signal exponential distribution, by default None

• cold_service_process (simfaas.SimProcess.SimProcess, optional)
– The process which will be used to calculate service times, if absent, cold_service_rate
should be passed to signal exponential distribution, by default None

• expiration_threshold (float, optional) – The period of time after which the
instance will be expired and the capacity release for use by others, by default 600

• max_time (float, optional) – The maximum amount of time for which the simu-
lation should continue, by default 24*60*60 (24 hours)

• maximum_concurrency (int, optional) – The maximum number of concurrently
executing function instances allowed on the system This will be used to determine when a
rejection of request should happen due to lack of capacity, by default 1000

Raises

• Exception – Raises if neither arrival_process nor arrival_rate are present

• Exception – Raises if neither warm_service_process nor warm_service_rate are present

19

Serverless Performance Simulator, Release 0.2.2

• Exception – Raises if neither cold_service_process nor cold_service_rate are present

• ValueError – Raises if warm_service_rate is smaller than cold_service_rate

analyze_custom_states(hist_states, skip_init_time=None, skip_init_index=None)
Analyses a custom states list and calculates the amount of time spent in each state each time we enterred
that state, and the times at which transitions have happened.

Parameters

• hist_states (list[object]) – The states calculated, should have the same dimen-
sions as the hist_* arrays.

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index (int, optional) – The number of indices skipped in the be-
ginning, by default None

Returns (residence_times, transition_times) where residence_times is an array of the amount of
times we spent in each state, and transition_times are the moments of time at which each
transition has occured

Return type list[float], list[float]

calculate_time_average(values, skip_init_time=None, skip_init_index=None)
calculate_time_average calculates the time-averaged of the values passed in with optional skipping a spe-
cific number of time steps (skip_init_index) and a specific amount of time (skip_init_time).

Parameters

• values (list) – A list of values with the same dimensions as history array (number of
transitions)

• skip_init_time (Float, optional) – Amount of time skipped in the beginning
to let the transient part of the solution pass, by default None

• skip_init_index ([type], optional) – Number of steps skipped in the begin-
ning to let the transient behaviour of system pass, by default None

Returns returns (unq_vals, val_times) where unq_vals is the unique values inside the values list
and val_times is the portion of the time that is spent in that value.

Return type (list, list)

calculate_time_lengths()
Calculate the time length for each step between two event transitions. Records the values in
self.time_lengths.

cold_start_arrival(t)
Goes through the process necessary for a cold start arrival which includes generation of a new function
instance in the COLD state and adding it to the cluster.

Parameters t (float) – The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

generate_trace(debug_print=False, progress=False)
Generate a sample trace.

Parameters

• debug_print (bool, optional) – If True, will print each transition occuring dur-
ing the simulation, by default False

20 Chapter 6. API Reference

Serverless Performance Simulator, Release 0.2.2

• progress (bool, optional) – Whether or not the progress should be outputted
using the tqdm library, by default False

Raises Exception – Raises if FunctionInstance enters an unknown state (other than IDLE for
idle or TERM for terminated) after making an internal transition

get_average_lifespan()
Get the average lifespan of each instance, calculated by the amount of time from creation of instance, until
its expiration.

Returns The average lifespan

Return type float

get_average_residence_times(hist_states, skip_init_time=None, skip_init_index=None)
Get the average residence time for each state in custom state encoding.

Parameters

• hist_states (list[object]) – The states calculated, should have the same dimen-
sions as the hist_* arrays.

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index (int, optional) – The number of indices skipped in the be-
ginning, by default None

Returns The average residence time for each state, averaged over the times we transitioned into
that state

Return type float

get_average_server_count()
Get the time-average server count.

Returns Average server count

Return type float

get_average_server_idle_count()
Get the time-averaged idle server count.

Returns Average idle server count

Return type float

get_average_server_running_count()
Get the time-averaged running server count.

Returns Average running server coutn

Return type float

get_cold_start_prob()
Get the probability of cold start for the simulated trace.

Returns The probability of cold start calculated by dividing the number of cold start requests,
over all requests

Return type float

get_index_after_time(t)
Get the first historical array index (for all arrays storing hisotrical events) that is after the time t.

Parameters t (float) – The time in the beginning we want to skip

6.1. ServerlessSimulator 21

Serverless Performance Simulator, Release 0.2.2

Returns The calculated index in self.hist_times

Return type int

get_request_custom_states(hist_states, skip_init_time=None, skip_init_index=None)
Get request statistics for an array of custom states.

Parameters

• hist_states (list[object]) – An array of custom states calculated by the user for
which the statistics should be calculated, should be the same size as hist_* objects, these
values will be used as the keys for the returned dataframe.

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index (int, optional) – The number of indices that should be
skipped in the beginning to calculate steady-state results, by default None

Returns A pandas dataframe including different statistics like p_cold (probability of cold start)

Return type pandas.DataFrame

get_result_dict()
Get the results of the simulation as a dict, which can easily be integrated into web services.

Returns A dictionary of different characteristics.

Return type dict

get_skip_init(skip_init_time=None, skip_init_index=None)
Get the minimum index which satisfies both the time and index count we want to skip in the beginning of
the simulation, which is used to reduce the transient effect for calculating the steady-state values.

Parameters

• skip_init_time (float, optional) – The amount of time skipped in the begin-
ning, by default None

• skip_init_index ([type], optional) – The number of indices we want to skip
in the historical events, by default None

Returns The number of indices after which both index and time requirements are satisfied

Return type int

get_trace_end()
Get the time at which the trace (one iteration of the simulation) has ended. This mainly due to the fact that
we keep on simulating until the trace time goes beyond max_time, but the time is incremented until the
next event.

Returns The time at which the trace has ended

Return type float

has_server()
Returns True if there are still instances (servers) in the simulated platform, False otherwise.

Returns Whether or not the platform has instances (servers)

Return type bool

is_warm_available(t)
Whether we have at least one available instance in the warm pool that can process requests

Parameters t (float) – Current time

22 Chapter 6. API Reference

Serverless Performance Simulator, Release 0.2.2

Returns True if at least one server is able to accept a request

Return type bool

static print_time_average(vals, probs, column_width=15)
Print the time average of states.

Parameters

• vals (list[object]) – The values for which the time average is to be printed

• probs (list[float]) – The probability of each of the members of the values array

• column_width (int, optional) – The width of the printed result for vals, by de-
fault 15

print_trace_results()
Print a brief summary of the results of the trace.

req()
Generate a request inter-arrival from self.arrival_process

Returns The generated inter-arrival sample

Return type float

reset_trace()
resets all the historical data to prepare the class for a new simulation

schedule_warm_instance(t)
Goes through a process to determine which warm instance should process the incoming request.

Parameters t (float) – The time at which the scheduling is happening

Returns The function instances that the scheduler has selected for the incoming request.

Return type simfaas.FunctionInstance.FunctionInstance

trace_condition(t)
The condition for resulting the trace, we continue the simulation until this function returns false.

Parameters t (float) – current time in the simulation since the start of simulation

Returns True if we should continue the simulation, false otherwise

Return type bool

update_hist_arrays(t)
Update history arrays

Parameters t (float) – Current time

warm_start_arrival(t)
Goes through the process necessary for a warm start arrival which includes selecting a warm instance for
processing and recording the request information.

Parameters t (float) – The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

6.1. ServerlessSimulator 23

Serverless Performance Simulator, Release 0.2.2

6.2 ServerlessTemporalSimulator

class simfaas.ServerlessTemporalSimulator.ExponentialServerlessTemporalSimulator(running_function_instance_count,
idle_function_instance_next_terminations,
*args,
**kwargs)

Bases: simfaas.ServerlessTemporalSimulator.ServerlessTemporalSimulator

ExponentialServerlessTemporalSimulator is a simulator assuming exponential distribution for proceesing times
which means each process is state-less and we can generate a service time and use that from now on. This class
extends ServerlessTemporalSimulator which has functionality for other processes as well.

Parameters

• running_function_instance_count (integer) – run-
ning_function_instance_count is the number of instances currently processing a request

• idle_function_instance_next_terminations (list[float]) –
idle_function_instance_next_terminations is an array of next termination scheduled
for idle functions if they receive no new requests.

class simfaas.ServerlessTemporalSimulator.ServerlessTemporalSimulator(running_function_instances,
idle_function_instances,
*args,
**kwargs)

Bases: simfaas.ServerlessSimulator.ServerlessSimulator

ServerlessTemporalSimulator extends ServerlessSimulator to enable extraction of temporal characteristics. Also
gets all of the arguments accepted by ServerlessSimulator

Parameters

• running_function_instances (list[FunctionInstance]) – A list contain-
ing the running function instances

• idle_function_instances (list[FunctionInstance]) – A list containing
the idle function instances

6.3 ParServerlessSimulator

class simfaas.ParServerlessSimulator.ParServerlessSimulator(concurrency_value:
int, *args,
**kwargs)

Bases: simfaas.ServerlessSimulator.ServerlessSimulator

ParServerlessSimulator is responsible for executing simulations of a sample serverless computing platform with
the ability to handle concurrent request in each instance, mainly for the performance analysis and performance
model evaluation purposes. For parameters, refer to ServerlessSimulator.

Parameters concurrency_value (int) – The number of concurrent requests allowed for each
function instance.

cold_start_arrival(t)
Goes through the process necessary for a cold start arrival which includes generation of a new function
instance in the COLD state and adding it to the cluster.

Parameters t (float) – The time at which the arrival has happened. This is used to record the
creation time for the server and schedule the expiration of the instance if necessary.

24 Chapter 6. API Reference

Serverless Performance Simulator, Release 0.2.2

get_average_conc_avgs()
Get the time-averaged average concurrency levels among all instances.

Returns Average concurrency levels of instances

Return type float

get_result_dict()
Get the results of the simulation as a dict, which can easily be integrated into web services.

Returns A dictionary of different characteristics.

Return type dict

is_warm_available(t)
Whether we have at least one available instance in the warm pool that can process requests

Parameters t (float) – Current time

Returns True if at least one server is able to accept a request

Return type bool

print_trace_results()
Print a brief summary of the results of the trace.

reset_trace()
resets all the historical data to prepare the class for a new simulation with additional functionality added
to base class.

update_hist_arrays(t)
Update history arrays

Parameters t (float) – Current time

6.4 FunctionInstance

class simfaas.FunctionInstance.FunctionInstance(t, cold_service_process,
warm_service_process, expira-
tion_threshold)

Bases: object

FunctionInstance aims to simulate the behaviour of a function instance in a serverless platform, with all the
internal transitions necessary.

Parameters

• t (float) – The time at which the instance is being created

• cold_service_process (simfaas.SimProcess.SimProcess) – The process
used to sample cold start response times

• warm_service_process (simfaas.SimProcess.SimProcess) – The process
used to sample warm start response times

• expiration_threshold (float) – The amount of time it takes for an instance to get
expired and the resources consumed by it released after processing the last request

arrival_transition(t)
Make an arrival transition, which causes the instance to go from IDLE to WARM

Parameters t (float) – The time at which the transition has occured, this also updates the
next termination.

6.4. FunctionInstance 25

Serverless Performance Simulator, Release 0.2.2

Raises Exception – Raises if currently process a request by being in COLD or WARM states

generate_cold_departure(t)
generate the departure of the cold request which is the first request received by the instance.

Parameters t (float) – Current time in simulation

get_life_span()
Get the life span of the server, e.g. after the server has been terminated

Returns life span of the instance

Return type float

get_next_departure(t)
Get the time until the next departure

Parameters t (float) – Current time

Returns Amount of time until the next departure

Return type float

Raises Exception – Raises if called after the departure

get_next_termination(t)
Get the time until the next termination

Parameters t (float) – Current time

Returns Amount of time until the next termination

Return type float

Raises Exception – Raises if called after the termination

get_next_transition_time(t=0)
Get how long until the next transition.

Parameters t (float, optional) – The current time, by default 0

Returns The seconds remaining until the next transition

Return type float

get_state()
Get the current state

Returns currentstate

Return type str

is_idle()
Whether or not the instance is currently idle, and thus can accept new requests.

Returns True if idle, false otherwise

Return type bool

is_ready()
Whether or not the instance is ready to accept new requests. Here, same as is_idle()

Returns True if ready to accept new requests, False otherwise

Return type bool

26 Chapter 6. API Reference

Serverless Performance Simulator, Release 0.2.2

make_transition()
Make the next internal transition, either transition into IDLE of already processing a request, or TERM if
scheduled termination has arrived.

Returns The state after making the internal transition

Return type str

Raises Exception – Raises if already in TERM state, since no other internal transitions are
possible

update_next_termination()
Update the next scheduled termination if no other requests are made to the instance.

6.5 ParFunctionInstance

class simfaas.ParFunctionInstance.ParFunctionInstance(concurrency_value, *args,
**kwargs)

Bases: simfaas.FunctionInstance.FunctionInstance

ParFunctionInstance aims to simulate the behaviour of a function instance in a serverless platform, with all
the internal transitions necessary allowing multiple requests to be parsed. For other input parameters, refer to
FunctionInstance.

Parameters

• cold_service_process (simfaas.SimProcess.SimProcess) – The process
used to sample cold start initialization process before warm process is starting. Note that
this is different from FunctionInstance

• concurrency_value (int) – The number of parallel requests that a single instance can
handle.

arrival_transition(t)
Make an arrival transition, which causes the instance to go from IDLE to WARM

Parameters t (float) – The time at which the transition has occured, this also updates the
next termination.

Raises Exception – Raises if currently process a request by being in COLD or WARM states

generate_cold_departure(t)
generate the departure of the cold request which is the first request received by the instance.

Parameters t (float) – Current time in simulation

get_concurrency()
get current concurrency level

Returns number of requests being processed right now

Return type int

get_next_departure(t)
Get the time until the next departure

Parameters t (float) – Current time

Returns Amount of time until the next departure

Return type float

Raises Exception – Raises if called after the departure

6.5. ParFunctionInstance 27

Serverless Performance Simulator, Release 0.2.2

get_next_transition_time(t=0)
Get how long until the next transition.

Parameters t (float, optional) – The current time, by default 0

Returns The seconds remaining until the next transition

Return type float

is_ready()
Whether or not the instance is ready to accept new requests. Here, same as is_idle()

Returns True if ready to accept new requests, False otherwise

Return type bool

make_transition()
Make the next internal transition, either transition into IDLE of already processing a request, or TERM if
scheduled termination has arrived.

Returns The state after making the internal transition

Return type str

Raises Exception – Raises if already in TERM state, since no other internal transitions are
possible

update_next_termination()
Update the next scheduled termination if no other requests are made to the instance.

6.6 SimProcess

class simfaas.SimProcess.ConstSimProcess(rate)
Bases: simfaas.SimProcess.SimProcess

ConstSimProcess extends the functionality of SimProcess for constant processes, meaning this is a determin-
istic process and fires exactly every 1/rate seconds. This class does not implement the pdf and cdf functions.

rate [float] The rate at which the process should fire off

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

class simfaas.SimProcess.ExpSimProcess(rate)
Bases: simfaas.SimProcess.SimProcess

ExpSimProcess extends the functionality of SimProcess for exponentially distributed processes. This class
also implements the pdf and cdf functions which can be used for visualization purposes.

rate [float] The rate at which the process should fire off

cdf(x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (float) – The time for which the cdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

28 Chapter 6. API Reference

Serverless Performance Simulator, Release 0.2.2

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf(x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (float) – The time for which the pdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

class simfaas.SimProcess.GaussianSimProcess(rate, std)
Bases: simfaas.SimProcess.SimProcess

GaussianSimProcess extends the functionality of SimProcess for gaussian processes. This class also imple-
ments the pdf and cdf functions which can be used for visualization purposes.

rate [float] The rate at which the process should fire off

std [float] The standard deviation of the simulated process

cdf(x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (float) – The time for which the cdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf(x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (float) – The time for which the pdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

class simfaas.SimProcess.SimProcess
Bases: object

SimProcess gives us a single interface to simulate different processes. This will later on be used to simulated
different processes and compare them agaist a custom analytical model. In the child class, after performing
super().__init__(), properties self.has_pdf and self.has_cdf by default value of False will be created. In case
your class has the proposed PDF and CDF functions available, you need to override these values in order for
your model PDF to show up in the output plot.

cdf(x)
cdf function is called for visualization for classes with self.has_cdf = True.

Parameters x (float) – The time for which the cdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

generate_trace()
generate_trace function is supposed to be replaced with the override function of each of the child classes.

6.6. SimProcess 29

Serverless Performance Simulator, Release 0.2.2

NotImplementedError By default, this function raises NotImplementedError unless overriden
by a child class.

pdf(x)
pdf function is called for visualization for classes with self.has_pdf = True.

Parameters x (float) – The time for which the pdf value (density) should be returned

Raises NotImplementedError – By default, this function raises NotImplementedError un-
less overriden by a child class.

visualize(num_traces=10000, num_bins=100)
visualize function visualizes the PDF and CDF of the simulated process by generating traces from your
function using generate_trace() and converting the resulting histogram values (event counts) to
densities to be comparable with PDF and CDF functions calculated analytically.

num_traces [int, optional] Number of traces we want to generate for calculating the histogram,
by default 10000

num_bins [int, optional] Number of bins for the histogram which created the density probabili-
ties, by default 100

6.7 Utility

simfaas.Utility.convert_hist_pdf(_values, num_bins)
convert_hist_pdf converts the histogram resulting from _values and num_bins to a density plot by dividing the
probability of falling into a bin by the bin size, converting the values to density. The resulting values could be
plotted and compared with the analytical pdf and cdf functions.

_values [list[float]] A list of values that we want to analyze and calculate the histogram for

num_bins [int] Number of bins used for generating the histogram

list[float], list[float], list[float] base, values, cumulative are returned which are the histogram bases,
density values, and cumulative densities which can be compared with the analytical cdf function

30 Chapter 6. API Reference

CHAPTER

SEVEN

JUPYTER DOCKER IMAGE

To ease the process of installation and experimenttion with SimFaaS, we developed a docker image extending the
Jupyter Notebook Data Science Stack. The resulting docker image is also available publicly on Docker Hub.

7.1 Installation

The only requirement for running the jupyter notebook stack is docker which can easily be installed:

sudo apt-get update && sudo apt-get -y install docker.io

docker ps
sudo docker ps

sudo usermod -aG docker $USER
sudo chown "$USER":"$USER" /home/"$USER"/.docker -R
sudo chmod g+rwx "/home/$USER/.docker" -R
sudo chown "$USER":"$USER" /var/run/docker.sock
sudo chmod g+rwx /var/run/docker.sock -R
sudo systemctl enable docker

7.2 Running

To run the jupyter lab in the current directory, simply run the following command:

IMAGE_NAME=nimamahmoudi/jupyter-simfaas # or $(cat .dockername) if in root folder of
→˓the github repo
TARGET_PORT=8888 # The port on which the jupyter notebook will run

docker run -it --rm \
-p $TARGET_PORT:8888 \
-e JUPYTER_ENABLE_LAB=yes \
--name jpsimfaas \
-v "$(pwd)":/home/jovyan/work \
$IMAGE_NAME

The container logs will contain the token you need to log into your jupyter lab session.

31

https://hub.docker.com/r/jupyter/datascience-notebook/
https://hub.docker.com/r/nimamahmoudi/jupyter-simfaas

Serverless Performance Simulator, Release 0.2.2

7.3 Building the Docker Image

In case you made changes to the library and wanted to build the docker image with your own changes, you can run the
following command.

IMAGE_NAME=nimamahmoudi/jupyter-simfaas # or $(cat .dockername) if in root folder of
→˓the github repo
docker build . -t $IMAGE_NAME

32 Chapter 7. Jupyter Docker Image

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

33

Serverless Performance Simulator, Release 0.2.2

34 Chapter 8. Indices and tables

PYTHON MODULE INDEX

s
simfaas.FunctionInstance, 25
simfaas.ParFunctionInstance, 27
simfaas.ParServerlessSimulator, 24
simfaas.ServerlessSimulator, 19
simfaas.ServerlessTemporalSimulator, 24
simfaas.SimProcess, 15
simfaas.Utility, 30

35

Serverless Performance Simulator, Release 0.2.2

36 Python Module Index

INDEX

A
analyze_custom_states() (sim-

faas.ServerlessSimulator.ServerlessSimulator
method), 5, 20

arrival_transition() (sim-
faas.FunctionInstance.FunctionInstance
method), 25

arrival_transition() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 27

C
calculate_time_average() (sim-

faas.ServerlessSimulator.ServerlessSimulator
method), 6, 20

calculate_time_lengths() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 6, 20

cdf() (simfaas.SimProcess.ExpSimProcess method),
15, 28

cdf() (simfaas.SimProcess.GaussianSimProcess
method), 16, 29

cdf() (simfaas.SimProcess.SimProcess method), 16, 29
cold_start_arrival() (sim-

faas.ParServerlessSimulator.ParServerlessSimulator
method), 13, 24

cold_start_arrival() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 6, 20

ConstSimProcess (class in simfaas.SimProcess), 15,
28

convert_hist_pdf() (in module simfaas.Utility),
30

E
ExponentialServerlessTemporalSimulator

(class in sim-
faas.ServerlessTemporalSimulator), 11,
24

ExpSimProcess (class in simfaas.SimProcess), 15, 28

F
FunctionInstance (class in sim-

faas.FunctionInstance), 25

G
GaussianSimProcess (class in sim-

faas.SimProcess), 15, 29
generate_cold_departure() (sim-

faas.FunctionInstance.FunctionInstance
method), 26

generate_cold_departure() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 27

generate_trace() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 6, 20

generate_trace() (sim-
faas.SimProcess.ConstSimProcess method),
15, 28

generate_trace() (sim-
faas.SimProcess.ExpSimProcess method),
15, 28

generate_trace() (sim-
faas.SimProcess.GaussianSimProcess method),
16, 29

generate_trace() (simfaas.SimProcess.SimProcess
method), 16, 29

get_average_conc_avgs() (sim-
faas.ParServerlessSimulator.ParServerlessSimulator
method), 13, 24

get_average_lifespan() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

get_average_residence_times() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

get_average_server_count() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

get_average_server_idle_count() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

37

Serverless Performance Simulator, Release 0.2.2

get_average_server_running_count() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

get_cold_start_prob() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

get_concurrency() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 27

get_index_after_time() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 21

get_life_span() (sim-
faas.FunctionInstance.FunctionInstance
method), 26

get_next_departure() (sim-
faas.FunctionInstance.FunctionInstance
method), 26

get_next_departure() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 27

get_next_termination() (sim-
faas.FunctionInstance.FunctionInstance
method), 26

get_next_transition_time() (sim-
faas.FunctionInstance.FunctionInstance
method), 26

get_next_transition_time() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 27

get_request_custom_states() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 7, 22

get_result_dict() (sim-
faas.ParServerlessSimulator.ParServerlessSimulator
method), 13, 25

get_result_dict() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 8, 22

get_skip_init() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 8, 22

get_state() (simfaas.FunctionInstance.FunctionInstance
method), 26

get_trace_end() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 8, 22

H
has_server() (sim-

faas.ServerlessSimulator.ServerlessSimulator
method), 8, 22

I
is_idle() (simfaas.FunctionInstance.FunctionInstance

method), 26
is_ready() (simfaas.FunctionInstance.FunctionInstance

method), 26
is_ready() (simfaas.ParFunctionInstance.ParFunctionInstance

method), 28
is_warm_available() (sim-

faas.ParServerlessSimulator.ParServerlessSimulator
method), 13, 25

is_warm_available() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 8, 22

M
make_transition() (sim-

faas.FunctionInstance.FunctionInstance
method), 26

make_transition() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 28

module
simfaas.FunctionInstance, 25
simfaas.ParFunctionInstance, 27
simfaas.ParServerlessSimulator, 24
simfaas.ServerlessSimulator, 19
simfaas.ServerlessTemporalSimulator,

24
simfaas.SimProcess, 15, 28
simfaas.Utility, 30

P
ParFunctionInstance (class in sim-

faas.ParFunctionInstance), 27
ParServerlessSimulator (class in sim-

faas.ParServerlessSimulator), 13, 24
pdf() (simfaas.SimProcess.ExpSimProcess method),

15, 29
pdf() (simfaas.SimProcess.GaussianSimProcess

method), 16, 29
pdf() (simfaas.SimProcess.SimProcess method), 16, 30
print_time_average() (sim-

faas.ServerlessSimulator.ServerlessSimulator
static method), 8, 23

print_trace_results() (sim-
faas.ParServerlessSimulator.ParServerlessSimulator
method), 13, 25

print_trace_results() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 9, 23

R
req() (simfaas.ServerlessSimulator.ServerlessSimulator

method), 9, 23

38 Index

Serverless Performance Simulator, Release 0.2.2

reset_trace() (sim-
faas.ParServerlessSimulator.ParServerlessSimulator
method), 13, 25

reset_trace() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 9, 23

S
schedule_warm_instance() (sim-

faas.ServerlessSimulator.ServerlessSimulator
method), 9, 23

ServerlessSimulator (class in sim-
faas.ServerlessSimulator), 5, 19

ServerlessTemporalSimulator (class in sim-
faas.ServerlessTemporalSimulator), 11, 24

simfaas.FunctionInstance
module, 25

simfaas.ParFunctionInstance
module, 27

simfaas.ParServerlessSimulator
module, 24

simfaas.ServerlessSimulator
module, 19

simfaas.ServerlessTemporalSimulator
module, 24

simfaas.SimProcess
module, 15, 28

simfaas.Utility
module, 30

SimProcess (class in simfaas.SimProcess), 16, 29

T
trace_condition() (sim-

faas.ServerlessSimulator.ServerlessSimulator
method), 9, 23

U
update_hist_arrays() (sim-

faas.ParServerlessSimulator.ParServerlessSimulator
method), 14, 25

update_hist_arrays() (sim-
faas.ServerlessSimulator.ServerlessSimulator
method), 9, 23

update_next_termination() (sim-
faas.FunctionInstance.FunctionInstance
method), 27

update_next_termination() (sim-
faas.ParFunctionInstance.ParFunctionInstance
method), 28

V
visualize() (simfaas.SimProcess.SimProcess

method), 16, 30

W
warm_start_arrival() (sim-

faas.ServerlessSimulator.ServerlessSimulator
method), 9, 23

Index 39

	Installation
	Serverless Simulator
	Temporal Simulator
	Serverless Temporal Simulator
	Exponential Temporal Simulator

	Multi-Request Serverless Simulator
	Simulated Process
	API Reference
	ServerlessSimulator
	ServerlessTemporalSimulator
	ParServerlessSimulator
	FunctionInstance
	ParFunctionInstance
	SimProcess
	Utility

	Jupyter Docker Image
	Installation
	Running
	Building the Docker Image

	Indices and tables
	Python Module Index
	Index

